STRAINED RING SYSTEMS. XV.¹ A REGIOSPECIFIC, NONCONCERTED SEMI-BENZILIC ACID REARRANGEMENT OF <u>ENDO-2-METHOXY-1,4-DICHLOROBICYCLO[2.2.1]HEPTAN-7-ONE</u>

Richard N. McDonald and Cesin A. Curi

Department of Chemistry, Kansas State University Manhattan, Kansas 66506

(Received in USA 23 January 1976; received in UK for publication 23 March 1976)

Of the several methods now available for preparing derivatives of bicyclo[2.2.0]hexane, the Scherer synthesis^{2,3} offers certain practical advantages. The key step in the synthetic sequence is the semi-benzilic acid ring contraction of 1,4-dichlorobicyclo[2.2.1]heptan-7one ($\underline{1}$) with powdered sodium hydroxide in THF to 4-chlorobicyclo[2.2.0]hexane-1-carboxylic acid ($\underline{5}$). We wish to report evidence which supports the mechanistic premise that rearrange-

ment of oxy-anion $\frac{3}{2}$ (and $\frac{4}{2}$) occurs in a two-step process via a C₄ anion rather than by a direct, concerted step involving C₄-C₇ bond rupture with ejection of chloride ion at C₁ as the C₁-C₄ bond in $\frac{5}{2}$ (and $\frac{6}{2}$) is formed.

The substrate with which we chose to examine this interesting ring contraction process was <u>endo-2-methoxy-1,4-dichlorobicyclo[2.2.1]heptan-7-one (2)</u>.⁴ It would not only be reasonably representative of $\underline{1}$ in this reaction, but would have present in the product [2.2.0] system a versatile function at C₃ for future conversions. Reaction of $\underline{2}$ with powdered sodium hydroxide in THF at 40° produced a mixture of acid $\underline{6}$ (89%) and the trisubstituted cyclohexanecarboxylic acid $\underline{7}$ (11%) in quantitative yield.

The structure of acid $\underline{7}$ was arrived at from analysis of its spectral data - mass spectrum (70 eV, heated inlet): 226 m/e (M^+); pmr (CDCl₃ + DMSO-d₆, internal TMS): τ 1.50 (s, CO₂H, 1), 5.50 (t of d's, C₄-H, 1), 6.61 (6 of 8 lines, C₃-H, 1), 6.65 (s, OCH₃, 3), and 7.2-8.3 (m, C_{2,5,6}-H's, 6); and ¹³C nmr (see Table I). Reaction of acid $\underline{7}$ with Pb(OAc)₄ and LiCl (Kochi reaction)⁵ gave <u>cis</u>-3-methoxy-1,1,4-trichlorocyclohexane ($\underline{8}$) in 95% yield where now the full 8-line pmr pattern of C₃-H was observed; pmr (CDCl₃, internal TMS): τ 5.50 (t of d's, C₄-H, 1),

6.40 [8 lines $(J_{C_3H(\underline{a})-C_2H(\underline{a})} = 10.2 \text{ Hz}, J_{C_3H(\underline{a})-C_2H(\underline{e})} = 4.7 \text{ Hz}, \text{ and } J_{C_3H(\underline{a})-C_4H(\underline{e})} = 3.4 \text{ Hz})$ C₃-H, 1], 6.66 (s, OCH₃, 3), and 7.2-8.1 (m, C_{2,5,6}-H's, 6); mass spectrum (70 eV, heated inlet): 216 m/e (M[±]); and ¹³C nmr (see Table I).

The relative stereochemistries of C_1 and C_3 in acid $\underline{7}$ are assigned since these positions are untouched in the semi-benzilic acid rearrangement of $\underline{2}$. The stereorelationship of C_4 in $\underline{7}$ comes from the observed 8-line pur pattern for the axial C_3 -H. Further, the magnitudes of the J values in the 8-line pattern require that C_4 -H be equatorial which leads to the conformational assignment of acid $\underline{7}$.

In the [2.2.0] acid $\underline{6}$, the site of attachment of the <u>endo</u>-methoxyl group was established from the ¹³C nmr spectra (Table I) of $\underline{6}$ and the Kochi reaction⁵ product, $\underline{2}$, derived from $\underline{6}$. Their pmr spectra were also consistent with the assigned structures with the <u>endo</u>-methoxyl group present in both compounds.

Since we were unable to observe the isomers of acids $\underline{6}$ and $\underline{7}$ even in the pmr spectrum of the crude reaction product, the semi-benzilic acid ring contraction of $\underline{2}$ to $\underline{6}$ via $\underline{4}$ occurs regiospecifically. While we would expect the <u>endo-2-methoxyl</u> group in $\underline{4}$ to have little effect on the concerted mechanism of ring contraction leading to a mixture of [2.2.0] acids, $\underline{6}$ + 4-chloro-<u>endo-2-methoxybicyclo[2.2.0]hexane-1-carboxylic acid</u>, a relatively large methoxyl substituent group effect should be expected if the ring contraction is stepwise with the involvement of the intermediate carbanion <u>10</u>.

The stereochemistry at C_4 of $\underline{7}$ leads us to believe that $\underline{7}$ is not formed by way of an additional intermediate involving the conformational flip from boat- $\underline{10}$ to the chair conformer which we would expect to yield a mixture of C_4 epimers with the equatorial C_4 -C1 epimer possibly dominant. Thus it appears that partitioning of anion $\underline{10}$ between protonation (+ $\underline{7}$) or intramolecular displacement (+ $\underline{6}$) are the subsequent steps in the mechanism.

In the absence of definitive data in the parent systems ring contraction, $\underline{1} \rightarrow \underline{5}$, we suggest that a nonconcerted ring contraction is operating here also. We then rationalize the observation of cyclohexanecarboxylic acid products in the present case and in the ring contraction of <u>endo-2-benzoyl-exo-2-methyl</u> $\underline{1}^{3f}$ as the result of a longer life-time of the

	C1 C02H H C1			C1 H C1 H C1 OCH ₃			C1 C1 H OCH ₃			C1 C1 H OCH ₃		
	Chem. ^a Shift (ppm)	<u>7</u> Mult.	^J C _α H ^b (Hz)	Chem. ^a Shift (ppm)	8 Mult.	JCaH (Hz)	Chem. ^a Shift (ppm)	<u>6</u> ,e Mult.	JC _A H b (Hz)	Chem. ^a Shift (ppm)	<u>9</u> ,e Mult.	JC _a H b (Hz)
c ₁	64.68	s	-	87.70	s		47.45	s		71.72	s	
с ₂	36.86	t	140	44.84	t	140	34.43	t	140	79.70	d	153
c3	76.85	d	135	76.31	đ	140	80.34	đ	151	43.23	t	141
c ₄	57.88	đ	155	57.14	đ	155	69.41	S		62.18	8	
с ₅	[29.53	t	125 ^{]C}	29.36	t	140	26.76	t	136] ^C	37.21	t	141
с ₆	31.12	t	125	39.29	t	136	26.23	t	136	26.46	t	141
осн ₃	55.79	q	140	55.91	q	142	56.51	q	142	56.60	P	140
C0,H	171.10	s					176.03	s				

Table I. ¹³C NMR Data for Compounds 6-9.

^aFrom Si(CH₃)₄. ^bDetermined from proton coupled spectra. For multiplicities: singlet (s), doublet (d), triplet (t), and quartet (q). ^cSpecific C assignments are not made for C₅ and C₆ in <u>6</u> and <u>7</u>. ^dNote different numbering of ring C's in <u>6</u> and <u>9</u> for comparison of the ¹³C nmr data. ^e The assignments of the two bridgehead positions in <u>6</u> and <u>9</u> were based on their T₁'s [<u>6</u>, C₁ (15.8 sec), C₄ (17.5 sec); <u>9</u>, C₁ (81.8 sec), C₄ (71.8 sec)] and their chemical shifts.⁶

intermediate ring-opened carbanion (e.g. $\underline{10}$) due to the substituent effects.

Scherer⁷ had suggested that carbanions were involved in analogous semi-benzilic ring contractions of certain cage α, α' -dichloro ketones when the reaction was carried out with aqueous base. We wish to emphasize the point that the above results were obtained in the aprotic medium NaOH/THF. To determine the effect of water on the reaction of $\underline{2} + \underline{6} + \underline{7}$, the process was carried out in 95% aqueous THF at 40°. As before only <u>6</u> and <u>7</u> were produced, but their individual yields were significantly altered; 64% of <u>6</u> and 36% of <u>7</u>. From this result, it appears that water serves as a proton source for carbanion <u>10</u> thus increasing the contribution of this reaction channel in the overall process

Analysis of the ¹³C nmr spectra of compounds 6-9 along with those of other [2.2.0] derivatives will be presented in a full paper.

<u>Acknowledgements</u>. We are pleased to acknowledge monies from the National Science Foundation and the KSU Agriculture Experiment Station for purchase of the XL-100FT used for the ¹³C nmr spectra, to Prof. J. Paukstelis for their determination, and Prof. D. Mueller for helpful discussions.

References and Footnotes

- For paper XIV in this series see R. N. McDonald and G. M. Muschik, <u>J. Org. Chem.</u>, <u>38</u>, 3944 (1973).
- (2) (a) K. V. Scherer, <u>Tetrahedron Letters</u>, 5685 (1966); (b) W. G. Dauben, J. L. Chitwood, and K. V. Scherer, <u>J. Amer. Chem. Soc.</u>, <u>90</u>, 1014 (1968).
- (3) Uses of the Scherer synthesis in related [2.2.0] chemistry are (a) K. V. Scherer and K. Katsonato, <u>Tetrahedron Letters</u>, 3079 (1967); (b) E. N. Cain, <u>1bid.</u>, 1865 (1971); (c) K. B. Wiberg, G. J. Burgmaier, and P. Warner, <u>J. Amer. Chem. Soc.</u>, <u>93</u>, 246 (1971); (d) J. Casanova and H. R. Rogers, <u>J. Org. Chem.</u>, <u>39</u>, 3803 (1974); (e) K. B. Wiberg, W. F. Bailey, and M. E. Jason, <u>1bid.</u>, <u>39</u>, 3803 (1974); and (f) C. L. Perrin and M-T. Hsia, <u>Tetrahedron Letters</u>, 751 (1975).
- (4) Ketone 2 or its hydrate is synthetically available from Diels-Alder of 5,5-dimethoxytetrachlorocyclopentadiene + vinyl acetate → adduct-<u>endo</u>-OAc → adduct-<u>endo</u>-OCH₃, then analogous reactions reported for the synthesis of 1.² All new compounds have given satisfactory elemental analyses.
- (5) See R. A. Sheldon and J. K. Kochi in "Organic Reactions," vol. 19, W. G. Dauben, Ed., Wiley, New York, N.Y., 1972.
- (6) (a) J. B. Grutzner, M. Jautelat, J. B. Dence, R. A. Smith, and J. D. Roberts, <u>J. Amer.</u> <u>Chem. Soc.</u>, <u>92</u>, 7107 (1970); (b) J. B. Stothers, "¹³C NMR Spectroscopy," Academic Press, New York, N.Y., 1972, pp 178-180.
- (7) See K. V. Scherer, R. S. Lunt, and G. A. Ungefug, <u>Tetrahedron Letters</u>, 1199 (1965) for suggested carbanion involvement in related base reactions of cage a,a'-dihalo ketones.